2,205 research outputs found

    Enhancing the photomixing efficiency of optoelectronic devices in the terahertz regime

    Get PDF
    A method to reduce the transit time of majority of carriers in photomixers and photo detectors to <1< 1 ps is proposed. Enhanced optical fields associated with surface plasmon polaritons, coupled with velocity overshoot phenomenon results in net decrease of transit time of carriers. As an example, model calculations demonstrating >280×> 280\times (or \sim2800 and 31.8 μ\muW at 1 and 5 THz respectively) improvement in THz power generation efficiency of a photomixer based on Low Temperature grown GaAs are presented. Due to minimal dependence on the carrier recombination time, it is anticipated that the proposed method paves the way for enhancing the speed and efficiency of photomixers and detectors covering UV to far infrared communications wavelengths (300 to 1600 nm).Comment: 5 pages, 4 figure

    Entanglement dynamics and quantum state transport in spin chains

    Full text link
    We study the dynamics of a Heisenberg-XY spin chain with an unknown state coded into one qubit or a pair of entangled qubits, with the rest of the spins being in a polarized state. The time evolution involves magnon excitations, and through them the entanglement is transported across the channel. For a large number of qubits, explicit formulae for the concurrences, measures for two-qubit entanglements, and the fidelity for recovering the state some distance away are calculated as functions of time. Initial states with an entangled pair of qubits show better fidelity, which takes its first maximum value at earlier times, compared to initial states with no entangled pair. In particular initial states with a pair of qubits in an unknown state (alpha up-up + beta down-down) are best suited for quantum state transport.Comment: 4 pages, 3 figure

    Management and Performance of APPLE Battery in High Temperature Environment

    Get PDF
    India's first experimental communication satellite, APPLE, carried a 12 AH Ni-Cd battery for supplying power during eclipse. Failure to deploy one of the two solar panels resulted in the battery operating in a high temperature environment, around 40 C. This also resulted in the battery being used in diurnal cycles rather than just half yearly eclipse seasons. The management and performance of the battery during its life of two years are described. An attempt to identify the probable degradation mechanisms is also made

    Quantum Entanglement in Heisenberg Antiferromagnets

    Full text link
    Entanglement sharing among pairs of spins in Heisenberg antiferromagnets is investigated using the concurrence measure. For a nondegenerate S=0 ground state, a simple formula relates the concurrence to the diagonal correlation function. The concurrence length is seen to be extremely short. A few finite clusters are studied numerically, to see the trend in higher dimensions. It is argued that nearest-neighbour concurrence is zero for triangular and Kagome lattices. The concurrences in the maximal-spin states are explicitly calculated, where the concurrence averaged over all pairs is larger than the S=0 states.Comment: 7 pages, 3 figure

    Parameterized Algorithms for Graph Partitioning Problems

    Get PDF
    In parameterized complexity, a problem instance (I, k) consists of an input I and an extra parameter k. The parameter k usually a positive integer indicating the size of the solution or the structure of the input. A computational problem is called fixed-parameter tractable (FPT) if there is an algorithm for the problem with time complexity O(f(k).nc ), where f(k) is a function dependent only on the input parameter k, n is the size of the input and c is a constant. The existence of such an algorithm means that the problem is tractable for fixed values of the parameter. In this thesis, we provide parameterized algorithms for the following NP-hard graph partitioning problems: (i) Matching Cut Problem: In an undirected graph, a matching cut is a partition of vertices into two non-empty sets such that the edges across the sets induce a matching. The matching cut problem is the problem of deciding whether a given graph has a matching cut. The Matching Cut problem is expressible in monadic second-order logic (MSOL). The MSOL formulation, together with Courcelle’s theorem implies linear time solvability on graphs with bounded tree-width. However, this approach leads to a running time of f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. The dependency of f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials. In this thesis we give a single exponential algorithm for the Matching Cut problem with tree-width alone as the parameter. The running time of the algorithm is 2O(t) · n. This answers an open question posed by Kratsch and Le [Theoretical Computer Science, 2016]. We also show the fixed parameter tractability of the Matching Cut problem when parameterized by neighborhood diversity or other structural parameters. (ii) H-Free Coloring Problems: In an undirected graph G for a fixed graph H, the H-Free q-Coloring problem asks to color the vertices of the graph G using at most q colors such that none of the color classes contain H as an induced subgraph. That is every color class is H-free. This is a generalization of the classical q-Coloring problem, which is to color the vertices of the graph using at most q colors such that no pair of adjacent vertices are of the same color. The H-Free Chromatic Number is the minimum number of colors required to H-free color the graph. For a fixed q, the H-Free q-Coloring problem is expressible in monadic secondorder logic (MSOL). The MSOL formulation leads to an algorithm with time complexity f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. In this thesis we present the following explicit combinatorial algorithms for H-Free Coloring problems: • An O(q O(t r ) · n) time algorithm for the general H-Free q-Coloring problem, where r = |V (H)|. • An O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr is a complete graph on r vertices. The above implies an O(t O(t r ) · n log t) time algorithm to compute the H-Free Chromatic Number for graphs with tree-width at most t. Therefore H-Free Chromatic Number is FPT with respect to tree-width. We also address a variant of H-Free q-Coloring problem which we call H-(Subgraph)Free q-Coloring problem, which is to color the vertices of the graph such that none of the color classes contain H as a subgraph (need not be induced). We present the following algorithms for H-(Subgraph)Free q-Coloring problems. • An O(q O(t r ) · n) time algorithm for the general H-(Subgraph)Free q-Coloring problem, which leads to an O(t O(t r ) · n log t) time algorithm to compute the H- (Subgraph)Free Chromatic Number for graphs with tree-width at most t. • An O(2O(t 2 ) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4 is a cycle on 4 vertices. • An O(2O(t r−2 ) · n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring, where Kr\e is a graph obtained by removing an edge from Kr. • An O(2O((tr2 ) r−2 ) · n) time algorithm for Cr-(Subgraph)Free 2-Coloring problem, where Cr is a cycle of length r. (iii) Happy Coloring Problems: In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly, a vertex is happy if all its incident edges are happy. we consider the algorithmic aspects of the following Maximum Happy Edges (k-MHE) problem: given a partially k-colored graph G, find an extended full k-coloring of G such that the number of happy edges are maximized. When we want to maximize the number of happy vertices, the problem is known as Maximum Happy Vertices (k-MHV). We show that both k-MHE and k-MHV admit polynomial-time algorithms for trees. We show that k-MHE admits a kernel of size k + `, where ` is the natural parameter, the number of happy edges. We show the hardness of k-MHE and k-MHV for some special graphs such as split graphs and bipartite graphs. We show that both k-MHE and k-MHV are tractable for graphs with bounded tree-width and graphs with bounded neighborhood diversity. vii In the last part of the thesis we present an algorithm for the Replacement Paths Problem which is defined as follows: Let G (|V (G)| = n and |E(G)| = m) be an undirected graph with positive edge weights. Let PG(s, t) be a shortest s − t path in G. Let l be the number of edges in PG(s, t). The Edge Replacement Path problem is to compute a shortest s − t path in G\{e}, for every edge e in PG(s, t). The Node Replacement Path problem is to compute a shortest s−t path in G\{v}, for every vertex v in PG(s, t). We present an O(TSP T (G) + m + l 2 ) time and O(m + l 2 ) space algorithm for both the problems, where TSP T (G) is the asymptotic time to compute a single source shortest path tree in G. The proposed algorithm is simple and easy to implement

    Feature selection, optimization and clustering strategies of text documents

    Get PDF
    Clustering is one of the most researched areas of data mining applications in the contemporary literature. The need for efficient clustering is observed across wide sectors including consumer segmentation, categorization, shared filtering, document management, and indexing. The research of clustering task is to be performed prior to its adaptation in the text environment. Conventional approaches typically emphasized on the quantitative information where the selected features are numbers. Efforts also have been put forward for achieving efficient clustering in the context of categorical information where the selected features can assume nominal values. This manuscript presents an in-depth analysis of challenges of clustering in the text environment. Further, this paper also details prominent models proposed for clustering along with the pros and cons of each model. In addition, it also focuses on various latest developments in the clustering task in the social network and associated environments

    Esterification of methacrylic acid with ethylene glycol over heteropolyacid supported on ZSM-5

    Get PDF
    Esterification of methacrylic acid with ethylene glycol was carried out over Heteropolyacids [HPA: H4SiW12O40 (STA) and H3PW12O40 (PTA)] supported on ZSM-5. For comparison, the same reaction was carried out over unsupported HPA, H 2SO4, BF3 and PTSA. Among the catalysts studied, HPA showed better activity compared to H2SO4, BF3 and PTSA. Catalytic activity was compared with HPA supported ZSM-5 catalysts. Typical results indicated that 30 wt% PTA supported on ZSM-5 showed nearly the same activity as that of bulk PTA. It was found that the reaction follows first order kinetics with respect to methacrylic acid. The reaction products were identified by 1H-NMR and FT-IR

    Novel Catalytic Dielectric Barrier Discharge Reactor for Gas-Phase Abatement of Isopropanol

    Get PDF
    Catalytic gas-phase abatement of air containing 250ppm of isopropanol (IPA) was carried out with a novel dielectric barrier discharge (DBD) reactor with the inner catalytic electrode made of sintered metal fibers (SMF). The optimization of the reactor performance was carried out by varying the voltage from 12.5 to 22.5kV and the frequency in the range 200-275Hz. The performance was significantly improved by modifying SMF with Mn and Co oxide. Under the experimental conditions used, the MnO x /SMF showed a higher activity towards total oxidation of IPA as compared to CoO x /SMF and SMF electrodes. The complete destruction of 250ppm of IPA was attained with a specific input energy of ∼235J/L using the MnO x /SMF catalytic electrode, whereas, the total oxidation was achieved at 760J/L. The better performance of the MnO x /SMF compared to other catalytic electrodes suggests the formation of short-lived active species on its surface by the in-situ decomposition of ozon

    Spin Decoherence from Hamiltonian dynamics in Quantum Dots

    Full text link
    The dynamics of a spin-1/2 particle coupled to a nuclear spin bath through an isotropic Heisenberg interaction is studied, as a model for the spin decoherence in quantum dots. The time-dependent polarization of the central spin is calculated as a function of the bath-spin distribution and the polarizations of the initial bath state. For short times, the polarization of the central spin shows a gaussian decay, and at later times it revives displaying nonmonotonic time dependence. The decoherence time scale dep ends on moments of the bath-spin distribuition, and also on the polarization strengths in various bath-spin channels. The bath polarizations have a tendency to increase the decoherence time scale. The effective dynamics of the central spin polarization is shown to be describ ed by a master equation with non-markovian features.Comment: 11 pages, 6 figures Accepted for publication in Phys.Rev
    corecore